Outlier Detection in Complex Categorical Data by Modeling the Feature Value Couplings
نویسندگان
چکیده
This paper introduces a novel unsupervised outlier detection method, namely Coupled Biased Random Walks (CBRW), for identifying outliers in categorical data with diversified frequency distributions and many noisy features. Existing pattern-based outlier detection methods are ineffective in handling such complex scenarios, as they misfit such data. CBRW estimates outlier scores of feature values by modelling feature value level couplings, which carry intrinsic data characteristics, via biased random walks to handle this complex data. The outlier scores of feature values can either measure the outlierness of an object or facilitate the existing methods as a feature weighting and selection indicator. Substantial experiments show that CBRW can not only detect outliers in complex data significantly better than the state-of-the-art methods, but also greatly improve the performance of existing methods on data sets with many noisy features.
منابع مشابه
Learning Homophily Couplings from Non-IID Data for Joint Feature Selection and Noise-Resilient Outlier Detection
This paper introduces a novel wrapper-based outlier detection framework (WrapperOD) and its instance (HOUR) for identifying outliers in noisy data (i.e., data with noisy features) with strong couplings between outlying behaviors. Existing subspace or feature selection-based methods are significantly challenged by such data, as their search of feature subset(s) is independent of outlier scoring ...
متن کاملAutomated Entropy Value Frequency (AEVF) Algorithm for Outlier Detection in Categorical Data
Outlier detection has been a very important concept in data mining. The aim of outlier detection is to find those objects that are of not the norm. There are many applications of outlier detection from network security to detecting credit fraud. However most of the outlier detection algorithms are focused towards numerical data and do not perform well when applied to categorical data. In this p...
متن کاملEmbedding-based Representation of Categorical Data by Hierarchical Value Coupling Learning
Learning the representation of categorical data with hierarchical value coupling relationships is very challenging but critical for the effective analysis and learning of such data. This paper proposes a novel coupled unsupervised categorical data representation (CURE) framework and its instantiation, i.e., a coupled data embedding (CDE) method, for representing categorical data by hierarchical...
متن کاملIdentification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملOutlier Analysis of Categorical Data using NAVF
Introduction Outlier analysis is an important research field in many applications like credit card fraud, intrusion detection in networks, medical field .This analysis concentrate on detecting infrequent data records in dataset. Most of the existing systems are concentrated on numerical attributes or ordinal attributes .Sometimes categorical attribute values can be converted into numerical valu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016